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Viscoelastic materials with fading memory, e.g., polymers, suspensions, and emulsions, 
exhibit behavior that is intermediate between the nonlinear hyperbolic response of purely 
elastic materials and the strongly diffusive, parabolic response of viscous fluids. Many popular 
numerical methods used in the computation of steady viscoelastic flows fail in important flow 
regimes, and thus do not capture significant non-Newtonian phenomena. A key to satisfactory 
explanation of these phenomena is the study of the full dynamics of the flow. This paper 
studies the dynamics of shear flow, presenting a description of non-Newtonian phenomena 
caused by a non-monotone relation between the steady shear stress and shear strain rate. 
Analytical results for such phenomena are surveyed, and three distinct numerical methods are 
developed to accurately compute the dynamics. The computations reproduce experimental 
measurements of non-Newtonian “spurt” in shearing flow through a slit die. They also predict 
related phenomena (such as hysteresis and shape memory); experiments are suggested to 
verify these predictions. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Viscoelastic materials with fading memory, e.g., polymers, suspensions, and emul- 
sions, exhibit behavior that is intermediate between the nonlinear hyperbolic 
response of purely elastic materials and the strongly diffusive, parabolic response of 
viscous fluids. Their properties reflect a subtle dissipative mechanism induced by the 
fading memory. Several interesting physical phenomena, which are important, for 
example, in polymer processing, arise in shear flows of viscoelastic fluids. Under- 
standing such phenomena has proved to be of significant physical, mathematical, 
and computational interest. We have found that satisfactory explanation and 
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modeling requires the study of the full dynamics of the equations of motion and the 
constitutive assumptions. 

ne striking phenomenon has been observed by Vinogradov et al. [2 
flow of viscoelastic fluids (monodisperse polyisoprenes) through capillaries. They 
found that the volumetric flow rate increased dramatically at a critical stress that 
was independent of molecular weight. This phenomenon, which is called “spurt,” 
had been overlooked or dismissed by rheologists because no plausible mechanism 
was known to explain it in the context of steady flows. Spurt was lumpe 
with instabilities such as “slip,” “apparent slip,” and “melt fracture,” 
poorly understood. While regarded as anomalous, these instabilities can severe2 
disrupt polymer processes; they can be avoided in practice only with a 
engineering expedients. The mechanisms of such phenomena are not u 
this is because the governing equations are a lytically intractable and because 
many numerical methods for steady viscoelastic id Wows falter in this regime and 
thus cannot model the spurt phenomenon. 

Several explanations have been offered for the spurt ~h~~orne~on [IZ, 4, 10, 131. 
Their common feature is that the shear stress in steady flow does not vary 
monotonically with shear strain rate (as illustrated in Fig. 2, below). These explana-, 
tions have been rejected be many rheologists as being 
believe that this criticism is unfounded because it is based 
generalized Newtonian models of non-Newtonian fluids. 
Pearson [ le], who discussed how non-monotone constituti 
various processing instabilities, including spurt. Pearson pointe 
monotone relations need not violate the laws of thermod 
model with a gap of inaccessible shear rates and eculated that it exhibits flow 
instabilities. Our work shows thab a relatively si ich submits to ;k 
complete analysis, produces these effects. 

A key to understanding the spurt phenomenon is the &ynamicai be 
constitutive relations as well as the equations of motion. hile there is a great 
variety of constitutive models for viscoelastic fluids, the amical behavior for 
many is difficult to analyze or compute. In this paper, we model the spurt 
~he~omenQ~ using the Johnson-Segalman model [X] of a ~Qn-~ewto~~a~ 
This constitutive relation correctly models the spurt phenomenon and 
sufficiently simple to be understood through a comb~*at~~n of analysis, 
asymptotics, and numerical simulation. A non-monotone stress-St 
of the kind that causes the spurt phenomenon arises when the 
characterized by multiple relaxation times. nterpretation of s~a~~-a~~~~t~de 
oscillatory shear data in Ref. [20] indicates that the relaxation times are widely 
spaced. Formal asymptotic analysis [ 111 of the dynamics shows that the effects of 
the smallest relaxation time are mimicked by a Newtonian viscos 
simplicity, then, we study the Johnson-Segalman model with a sin 
ti and added Newtonian viscosity. 

e study idealized shearing flow through a narrow slit die. Assu 
driving pressure is transmitted instantaneously, the three-d~rn~~s~on 
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approximated by a one-dimensional problem. Our analytical and numerical results 
show that flow in a slit die reflects the essential features observed for capillaries. We 
believe that this is because the spurt phenomenon depends solely on material 
properties and the smallest physical dimension of the problem. 

The outline of this paper is as follows. In Section 2, we describe the modeling of 
shearing flow of a viscoelastic fluid using the Johnson-Segalman constitutive rela- 
tion. Mathematical results for this model, as well as for related models that capture 
some key features, are surveyed in Section 3. These include evolutionarity of the 
system, existence and regularity of solutions, formation of discontinuities, 
asymptotic behavior for large time, stability of steady solutions, structure of discon- 
tinuous solutions, and dynamics of a related system of ordinary differential equa- 
tions. In Section 4, we develop three distinct numerical methods for solving the flow 
equations, accounting for the mathematical structure of the model. That these 
methods reproduce physical phenomena is demonstrated in Section 5, where we 
compare numerical calculations with experimental data for the spurt phenomenon. 
Based on these results, we propose in Section 6 some rheological experiments 
to confirm the predictions of the model. Finally, in Section 7, we discuss our 
conclusions. 

2. MATHEMATICAL FORMULATION 

2a. Shear Flow of a Johnson-Segalman Fluid 

The motion of a fluid under incompressible and isothermal conditions is 
governed by the balance of linear momentum 

(2.1) 

Here, p is the fluid density, v is the particle velocity, and S is the stress tensor. The 
response characteristics of the fluid are embodied in the constitutive relation for the 
stress. For viscoelastic fluids with fading memory, these relations specify the stress 
as a functional of the deformation history of the fluid. Many sophisticated 
constitutive models have been devised; see Ref. [l] for a survey. In the present 
work, we focus on the Johnson-Segalman model [S] as a prototype for general 
constitutive models. This model accounts for non-affine deformation of Gaussian 
networks by introducing a slip parameter a, - 1 <ad 1, leading to a nonlinear 
generalization of the classical Maxwell model. 

To specify this constitutive relation, we decompose the stress as 

S= -pI+2yD+X. (2.2) 

In this equation, p is an isotropic pressure (which is determined from the incom- 
pressibility constraint), 11 is the coefficient of Newtonian viscosity, and E is the non- 
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Newtonian extra stress. Also, we let D := i [Vv -!- (VV)~] an 
be the symmetric and antisymmetric parts of the velocity gradient Vv, which has 
components (Vv): := dv’/dxj. The extra stress is specified by the d~~ere~t~a~ 
constitutive law 

where 

i- = 2pD - xz, (2.3) 

(2.4) 

is the objective time derivative of ZI with parameter a. The parameter ,U is an elastic 
shear moduhts, and I. is a relaxation rate. 

Constitutive relations such as Eq. (2.3) exhibit a mixture of elastic and viscous 
behavior. This may be seen heuristically as follows. In the long relaxation-tarns 
limit, 2 + 0, Eq. (2.3) sho?s that an objective time derivative of C is ~r~~~rt~~~a~ 
to the deformation rate: X - 2yD. This is characteristic of elastic behavior, and 
leads to the interpretation of ,LI as a shear modulus. y contrast, when ik, p + cc) 
with ,LL/~~ fixed, C - 2(p/k) D; thus the model dispfa viscous behavior with p/1 
being the Newtonian shear viscosity coefficient. 

EssentiaH properties of the constitutive relation are exhibited in simple p!anar 
shear flow. With the flow aligned along the y-axis (see Fig. l), the ffow variables 
are independent of y. Therefore the velocity field is v = (0, v(x, t)), and the balance 
of mass is automatically satisfied. Furthermore, the components of the extra st 
tensor X may be written C”” = y(x, t), .Z? = C”” = o(x, t), and CYY = z(x, t), 
the pressure takes the form p = pO(x, t) -f(t) y, f being the pressure gradient 
driving the flow. In these terms, Eqs. (2.3) become 

FIG. 1. Shear flow through a slit-die. 
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Introducing the variables Z:=$(l+a)y-$(l-a)z and W:=-$(l+a)y 
- i( 1 - a) T, Eqs. (2.5) simplify to * 

a,-(Z+I”)v,= -/lo, (2.6a) 

Zt+(l-u2)av,= -AZ, (2.6b) 

w,= -AW. (2.6~) 

Because W must remain finite as t --r -co, WE 0, and the last equation may be 
omitted. As a result, Z = - 4( 1 - a’)(~ - y), where ,YYY -C” = z - y is the principal 
normal stress difference. 

Combining the constitutive law (2.6) with the balance of linear momentum (2.1), 
we are led to the system of equations 

PVr-fJx=YIvxx+L (2.7a) 

a,-(2+p)v,= -Lo, (2.7b) 

Zt+(1-~2)~v,= -z. (2.7~) 

In this paper, we study shear flow between two parallel plates, located at x = + h/2. 
By symmetry, we need only consider the flow on the interval [-h/2,0]. The 
no-slip condition at the plate implies the boundary condition v( - h/2, t) = 0, while 
symmetry imposes that v,(O, t) = 0. We also prescribe initial values for v, 0, and Z, 
which must be compatible with the boundary conditions. To conform with the 
symmetry, we require that rr(0, 0) = 0; then, according to Eq. (2.7b), o(0, t) = 0 for 
all time. 

To eliminate unnecessary parameters, we scale distance by h, time by /2-l, and 
the stresses (T and Z by p. Furthermore, if we replace (T, v, and f by 
B := (1 -a2)‘j2 G, 0 := (1 -a2)li2 v, and I:= (1 -a2)‘/‘f, respectively, then the 
parameter a disappears from Eqs. (2.7). Since no confusion will arise, we omit the 
caret. The dimensionless parameters are CL := ph2A2/,u and E := y;l/p. Consequently, 
we study the initial-boundary-value problem for the system 

au, - gx = EV,, + J; 

o,-(Z+l)v,= -0, 

zr+fYJ,= -z, 

(JSI 

on the interval [ - l/2, 01, with boundary conditions 

v( - l/2, t) = 0 and v,(O, t) = 0 PC) 

and initial conditions 
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where uO(- l/2) =O, u;(O) =O, and a,(O) = 0. For later purposes, notice that the 
momentum equation may be written CIU, - TX = A where T := a + EV,~ denotes the 
total shear stress. 

2b. Steady Shear Flow 

The steady-state solutions of (JS), when the forcing term f is a constant x play 
an important role in our discussion. Such a solution, denoted by a?, 3, and Z, is 
given as follows. The stress components 0 and Z are related to the velocity gra 
5, (which, in dimensionless units, is the Deborah number) through 

and 

Therefore the total steady shear stress T := o + FZ;, is given by T= T+&u~), where 

T steady(G) := -!L 1 +u; 
+ ec,. 

When E < 118, this relation between the steady shear stress and strain rate is not 
monotone, as illustrated in Fig. 2. In this manner, the “stress loop” of Fig. 2 arises 
automatically in the Johnson-Segalman model. 

The momentum equation, together with the boundary condition at the ~e~ter~i~e~ 
implies that the total steady shear stress satisfies T= -fx for x E [ - $,O]~ Therefore 
the velocity gradient may be determined as a function of x by solving 

FIG. 2. Total steady shear stress T vs. shear strain rate C, for steady flow. 
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The steady velocity profile, shown in Fig. 3, is obtained by integrating 5, and using 
the boundary condition at the wall. However, because the function Tsteady is not 
monotone, there may be up to three distinct values of 6, that satisfy Eq. (2.11) for 
any given x. Consequently, 5, may suffer jump discontinuities, resulting in kinks in 
the velocity profile (as at the point x* in Fig. 3). Indeed, a steady solution must 
contain such a jump if the total stress Twall = f/2 at the wall exceeds the total stress 
at the local maximum in Fig. 2; for later convenience, we denote this critical stress 
by Tcrit = Lit 12. 

2c. Comparison with the Generalized Newtonian Model 

Traditionally, a non-monotone relation between stress and strain rate is regarded 
as a defect of the constitutive law. This conclusion is based on intuition appropriate 
for generalized Newtonian models of non-Newtonian fluids. Shear flow for such a 
fluid is governed by the single equation 

PJ, - Cl?(fJx) ~,I, =f, (2.12) 

corresponding to having a viscosity coefficient y that depends on strain rate. In a 
flow regime where ~(0,) v, decreases with strain rate o,, however, Eq. (2.12) has 
the character of a backward heat equation, which suffers from the Hadamard 
instability. Therefore for generalized Newtonian fluids, y(v,) U, must increase with 
v, in a physically stable steady solution. 

The system (JS) has the same steady solutions as a generalized Newtonian model 
with r(v,) v, = Tsteadvxh so one might think that it exhibits the same instability in 
regions where Tsteady decreases. This conclusion is not warranted, however, because 
the system (JS) maintains its evolutionary character when E > 0 (see Section 3a). 

V 

-h/Z X* 0 

FIG. 3. Velocity profile for steady flow 
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3. MATHEMATICAL 

Several mathematical results are known for the system (JS); we refer to 
efs. [6, 19, 4, 18, 3, 15, 1 I] for further discussions and additional references. 

3a. Evolutionarity, Existence of Solutions, and Formation of L&continuities 

When the viscosity parameter E = 0, the quasi-linear system (JS) is strictly hyper- 
bolic provided that Z + 1 > 0. In this case, the wave speeds are F [(Z + ! )/a]lj2 
and zero. If, on the other hand, ZS 1 becomes negative, then (JS), w  
undergoes a change of type and loses its evolutionary character. Joseph 
and Saut [6] have associated this change of type with certain fluid instabilities. 
Notice, however, that Z + I > 0 for steady flows, according to Eq. (2.9). A similar 
result holds for two-dimensional flows: Joseph and Saut [7] have ~e~o~~t~ate 

that flows perturbing plane Poiseuille flow of a Johnson-§egalma~ fluid do not lose 
evolutionarity. 

Suppose that E = 0 and f = 0, and assume that the initial data are smooth and lie 
in the hyperbolic region. If the data have sufficiently small variation, then a unique 
classical solution of (JS), (IC), (BC) exists globahy in time; moreover, the solution 
decays to zero as t --f co. This can be proved using the energy methods discussed in 

et [19]. On the other hand, if the data have sufficiently large variation, then the 
assical solution blows up within finite time; i.e., 11; ~ /, /Go /, and IZ, / ap 

infinity as t approaches a finite critical time. This is proved in 
method sf characteristics. Thus the fading memory acts as a 
mechanism: the source terms in the equations serve to counterac 
singularities from sufficiently smooth data. Ashen iscontinuities do form, system 
(JS) is no longer valid because the products of distributions ZV, and GE!,~ are 
ill-defined. (See the discussion in Section 3b.) 

f E > 0, the system (JS) is evolutionary, but it cannot be classified according to 
type. Recently, Guillope and Saut [3] established the global existence of soI~t~o~~ 
of (JS) for planar Couette and Poiseuille flow with data of arbitrary size. They also 

the asymptotic (Lyapunov) stability of steady states in the Couette case. 

3b. Conservation Laws 

It is important to observe that (JS) is not in conservation form. The evolution 
of a Johnson-Segalman fluid is, in fact, governed by physical conservation laws 
[&]. A conservative formulation of (JS) must be used when a;, v, and Z are discon- 

tinuous. 
Following Plohr [18], we introduce the “elastic part” z of the shear strain and 

the “entropy” variable z through the relations 

c:=zsin~, (3.la) 

z+1 :=zcosz. (3.lb) 
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Then system (JS) is transformed into the equivalent system 

z;-v,= -z-’ sin r, 

mu, - Cd% z) + EV,l, =A (Cl 
z,= -(z-COST), 

which is in conservative (i.e., divergence) form. Furthermore, if the internal energy 
& is defined by 

cI8:=1-zcosz, (3.2) 

the energy is dissipated according to the equation 

a[~v2+8(Z, z)ll- ([a(z, z)+&v,] v},=vf -cd(z, z)-&(VJ2. (3.3) 

The conservative formulation (C) of (JS) is used in the numerical methods dis- 
cussed in Section 4c. 

3c. Model Problems 

More detailed analytical results are obtained by simplifying the system (JS). A 
model system that incorporates several qualitative features of (JS) is obtained by 
freezing Z at its equilibrium value: Z+ 1 = l/( 1 + ~5). Defining g(u,) := v,/(l + vz), 
system (JS) becomes 

NV, - Qx = EV,.x + L 

cTr - g(v,) = -G. 
(W 

More generally, g may be any smooth, odd function. The boundary and initial con- 
ditions for v and c are the same as in (BC) and (IC). We assume that E > 0 and 
thatfis the constantf: The function g is related to the steady stress-strain-rate rela- 
tion through Tsteady (6,) = g(U,) + ~6,. A steady solution of (M) satisfies 0 = g(V,) 
and Tsteady(Ux)= -TX, just as for the system (JS). 

Nohel, Pego, and Tzavaras [15] have shown that the global classical solution v, 
d of (M), (BC), (IC) has the following properties: 

(i) With S:=~+sv,+fji, S(x, t) -+ 0 as t + co, uniformly for x E [ - 4, 01. 

(ii) There exists a steady state 6, 5 such that for each XE [ - 4, 01, 
u(x, t) -+ V(x), v,(x, t) + V,(x), and CJ(X, t) + c(x) as t --f co. We emphasize that the 
steady velocity gradient 6, and stress 5 may be discontinuous (as in Fig. 2). 

(iii) Let 0, 6 be a steady state such that 

T’ steady( 6,) = g’( U,) + E B const. > 0. (3.4) 
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(Referring to Fig. 2, inequality (3.4) precludes top and bottom jum 
excludes the region where Tsteady (U,) decreases.) Consider a union %! of s 
tervals of - $ c x < 0 that are centered at points where U, and 6 are discont‘ 
Let smooth initial data be chosen such that IS(x, O)i is sufficiently sma 
%Y. Then the solution of (M) converges to the steady state V, 5 on the 
of a. Moreover, the measure of %! can be made arbitrarily small by chaos’ 
IS(x, O)l small enough. In this sense, steady states are stable (even if 6, and 8 
discontinuous ). 

The numerical results discussed in Section 5 suggest that similar results hoi 
the system (JS). Proofs for (JS) are under investigation. 

The model problem (M) was studied also by Hunter and Slemro 
construction of the model, the steady-state relation 6 = g(V,) between the s 
strain rate is chosen to be g,,(v,) := B~~~(D,)-Eu,, where the graph of 
tion gX9 resembles Fig. 2. In contrast with G~.~ := Tsteady, G,~~ is indep 
E. unter and Slemrod base their analysis on the conservation laws, 

w*-u,=Q, 

au, - May, = EU,, - OIU 

(3.5a) 

(3.5b) 

for the acceleration u = U, and the strain rate w  = v,. Therefore jumps in the strain 
rate ox are seen to correspond to steady shock waves for the system (3.5) with c = 0. 
Based on a local dynamical analysis of shock structure for small E, the centerline 
velocity is shown to exhibit hysteresis under quasi-static cycling of the 
gradient. (This same behavior is observed in the numerical simulation of the system 
(JS); see Section 5.) We emphasize, however, that this analysis cannot be applied 
to the model problem (M) as derived from the Job~son-S~ga~rna~ system (JS) 
because the function gaY(v,) := v,/(l + v$) decays to zero at high strain rate. 

3d. Phase-Plane Analysis 

tailed information about the structure of solutions of (JS) can be 
ga studying a system of ordinary differential equations that ap~ro~~mates 
it. Motivation for this approximation comes from the following observation: in 
experiments of Vinogradov, et al. [20], cx = ph2jb2/p is of the order 10-‘2; s tbe 
term olv, in the momentum equation of (JS) is negligible even when v, is m ately 
large. We are led to study the approximation to (4s) obtained when x = 0. As we 
now outline, the behavior of solutions of the resulting dynamical system offers 
an explanation for several features of the flows calculated for the full system 
(Section 5); in fact, these calculations prompted the following analysis. detailed 
exposition of these results is to be found in Ref. r II]. 

When cx = 0, the momentum equation may be integrated, just as in the case 
steady flows, to show that the total shear stress T := o +FV, coincides with t 
steady value T(x) = -TX. The remaining equations of (JS) become, for each fixed 
x, the autonomous planar system of ordinary differential equations 
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(3.6a) 

(3.6b) 

We emphasize that a different dynamical system is obtained at each point in the 
channel. These dynamical systems can be analyzed completely by a phase-plane 
analysis [ 111, with the following results: 

(i) A critical point for the system (3.6) defines a steady-state solution of 
(JS); such a solution corresponds to a point on the steady total-stress curve (see 
Fig. 2) at which the total stress is T(x). Consequently, there is a single critical point 
when T is sufficiently small or sufficiently large, while there are three critical points 
when T is intermediate in value. A critical point, such as A, that lies between the 
origin 0 and the local maximum M of the total-stress curve is an attracting node, 
which we call a classical attractor. A point, such as C, that lies past the local mini- 
mum m is either an an attracting node or an attracting focus, called a spurt attractor. 
A critical point B lying between A4 and m is a saddle point. The phase plane for 
an example with three critical points is shown in Fig. 4, where the invariant 
manifolds for the classical attractor A and the saddle point B have been drawn. By 
constructing an invariant region for system (3.6) and analyzing its critical points at 
infinity, the qualitative structure of orbits for the dynamical system can be determined 
completely. 

L 

FIG. 4. Phase plane when T is subcritical. The critical points A, B, and C are, respectively, an 
attracting node, a saddle point, and a stable focus. 
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(ii) Suppose that th e initial conditions for the ow are at the origin, 5 =O 
and Z = 0, and suppose that the forcing f is supercritic . For points x near the cen- 
terline, where T(x) lies below Tcrit, the origin lies in the basin of attraction of the 
classical attractor. This is illustrated in Fig. 4, where the integral curve starting at 
the origin 0 ends at A. When T(x) exceeds FCcrit, the only critical point is the spurt 
attractor. The orbit through the origin 0 in this case is shown in Fig. 5. Conse- 
quently the flow is predicted to approach a steady spurt solution in which the ju 
in strain rate occurs at the maximum stress (“top jumping”), with the kink in 
velocity profile located as close as possible to the wall. Similar arguments explain 
the hysteresis effects that occur upon unloading. 

(iii) More quantitative information is obtained when E 
Fig. 2, the total stress Tcrit at the local maximum M is $+ 

minimum m corresponds to a total stress of 2& cl + O(E)]. 
g = Tt O(E) at a classical critical point, while (T = O(E) for a spurt attractor, 
Consider a point along the channel for which T(x) > FCcrlt, so that the only critical 
point is the spurt attractor, and suppose that T< 1. Then the evolution of the 
system exhibits three distinct phases, as indicated in Fig. 5: an initial “~ewt~~~a~‘~ 

hase (0 to N); an intermediate “latency” phase (N to S); and a final “spurt” phase 
(S to C). 

The Newtonian phase occurs on a time scale of order E, during which the system 

FIG. 5. Phase plane when fi is supercritical. The point C is the spurt attractor; point L is located 

atZ=--IfT. 

581:87,‘2-16 
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mechanics. This method is based on a Galerkin weak form of the momentu 
tion, with test functions 4 E @ and trial functions V( ., t) E @ for each 1. 
continuous piecewise linear functions for @, and we represent a and Z as ~iecewise 
constant. The semidiscrete Galerkin equation (integrated by parts) is evaluated at 
t ,I + , = (n + 1) At, yielding 

where (u~),+~ means u,(x, t n + 1), etc. The Galerkin equation is solved for v, + , by 
advancing the viscoelastic contribution to the stress using a semi-implicit treatme 
of the constitutive equation: 

a .+,=(l-At)a,+AtZ,(v,),+At(v,),+,. 

The time derivative is discretized with a trapezoidal approximation, so that 

V n+l =v,+AW -~h~,+“i(v,L+~; (4.3) 

for some parameter y > 0. The combination of Eqs. (4.1)-(4.3) is a method in whit 
the damping term, which has effective viscosity F -6 dt, is treated implicitly, while 
the nonlinear term involving Zv, is treated explicitly. The matrix formulation is 
described in Ref. [9]; as with linear problems, the system matrix needs refactoriza- 
tion only if dt is changed. After solution of the combined equations for v, t ), cr is 
corrected and Z is advanced according to 

Other variants of (4.4) that treat the constitutive equations with a higher degree of 
implicitness are obvious. However, as long as they are combined with (4.2), which 
limits the scheme to first-order accuracy in time, there is no reason to expect such 
variants to be more accurate. They may improve stability, but the algorithm, as 
given, is very stable. 

The stability of this method has been analyzed for the system (JS) wit frozen 
[12]: the method is stable provided that Z + 1 > --E and the time step is restricted 
by Af < 2 (i.e., At < 2/j,, dimensionally). Of course, if Z + 1 d -8, then the differen- 
tial equations themselves, as well as the method, are hnearly unstable. 

4b. Parabolic Formulation 

Recall that the total stress is defined to be T= r~ + EV,; assume that F > 0. Intro- 
ducing T as an independent variable, the system (JS) is replaced by 
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The boundary conditions are r,( - 1, t) = -f and T(0, t) = 0. The velocity profile 
may be reconstructed by integrating (T- (T)/E. 

The system (4.5) has the form of a linear heat equation forced by a nonlinear 
heat source that is governed by two auxiliary ordinary differential equations. To 
solve this system numerically, we discretize the parabolic term in Eq. (4.5a) 
implicitly while treating the remaining forcing terms explicitly. Time integration is 
performed using a packaged ordinary differential equation solver. 

We remark that system (4.5) is convenient also for studying existence and 
regularity of solutions of (JS). 

4~. Conservative Formulation 

The system (JS) is equivalent to the system (C); therefore it may be studied from 
the viewpoint of conservation laws. In Ref. [18], we have determined completely 
the structure of scale-invariant nonlinear waves for (C) when E =O. Such a wave 
consists of a sequence of elementary scale-invariant waves, either centered discon- 

3x12 I / -+.. I 
, \ 

\ 
# 

elliptic 
fL / - <- --- 

2 

FIG. 6. The wave curve diagram (schematic) for a typical U,. Solid curves correspond to rarefac- 
tion waves, dashed curves to shock waves, and dashed curves with crossbars to composite waves. Darker 
curves represent the --c family, while lighter curves represent the +c family. 
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tinuities or rarefaction waves, connecting constant states on the left and rig 
Discontinuities are required to satisfy Liu’s generalization of Oleinik’s entropy con- 
dition, which guarantees that energy is dissipated (cf. Eq. (3.3)). This admiss 
condition is equivalent to requiring shock waves to have viscous profiles: adm 
shock waves arise as limits of traveling-wave solutions of (C) as E -+ 0. Our analysis 

110~s the techniques for general systems of conservation laws discussed in 
efs. [14, 51. 
The wave structure is conveniently depicted with a wave curve, the locus of states 

U= (T, v, z) on the right for a fixed state UL = (z,, vL, ZJ on the left z may 
change across waves with zero speed, so these wave curves are trivial. e other 
band, z remains constant across waves corresponding to the characteristic families 
with speeds + c, so we suppress the z component of U when drawing wave curves. 
Figure 6 shows the wave curve of the --c (i.e., slow) family for a re~resc~~at~ve 
initial state U,; through points along this curve are drawn the wave curves of the 
+c (i.e., fast) family. The figure was produced using a computer program that 
constructs the wave curves for general systems of conservation laws [Sj. 

With the structure of scale-invariant waves known, ~~~rna~~ i~~tia~~va~~c 
problems may be solved. This is illustrated in Fig. 6 for the ann problem with 
left state U, and right state U,: the solution contains the le state U, sepa- 
rating a slow composite wave on the left from a fast composite wave on the right. 
We have written a computer program that solves 
incorporated it into the Glimm-Chorin random choi 
the Cauchy problem without introducing artificial Newtonian viscosity. 

ef. [ 17 ] for a detailed discussion. 

5. NUMERICAL RESULTS 

lin this section we describe several features of the shear flow of a Johnson- 
SegaPman fluid, as obtained using the numerical methods of Section 4. 

5a. Effects of Newtonian Viscosity 

As our first numerical experiment, we simulated system (62) with F = 0 using the 
random choice method. Parameters were chosen so that 01= 1. The flow was 
initially in the classical steady state corresponding to the critical pressure gra 
f,,,, = 1; then the pressure gradient is increased abru tly to the s~~er-~~~~~ca~ 
value 1 .2fcrit. 

The result is shown in Fig. 7. The fluid velocity u is plotted vs position x at 
successive time intervals; generally the velocity increases with time. 
stages of the experiment, the flow settled into a quasi-steady state. Tkis latency 
effect is especially evident in a plot of the centerline velocity as a function of ti 
and it is more pronounced when CI is smaller. Eventually, wever, a thin layer 
develops at the plate in which the velocity rises to a value t is nearly constant 
across the channel. For practical purposes, the fluid has broken free from the plate 



480 MALKUS, NOHEL, AND PLOHR 

Y 
A 

time 

or 
-0.5 -0.4 -0.3 -0.2 -0.1 0 

x 

FIG. 7. Onset of slip for a fluid without Newtonian viscosity. 

and is accelerating uniformly under the applied pressure gradient; thus the fluid 
“slips.” This occurrence might be related to the phenomenon of wall slip, which has 
been associated with non-monotone constitutive relations [2, lo]. 

It is worth noting that the random choice method is the only numerical method 
that can calculate super-critical flows with E = 0: other methods must be stabilized 
with artificial viscosity when the flow is discontinuous. This is important because 
some fluids that exhibit spurt have negligible Newtonian viscosity. (For these fluids, 
the relation between steady stress and strain rate resembles Fig. 2 because of 
multiple relaxation time scales [ 11 I.) 

The same experiment was performed for system (C) with a small, but nonzero, 
Newtonian viscosity coefficient E. Figure 8 shows the results for E =O.Ol, as 
calculated using the Lax-Wendroff method with Tyler artificial viscosity. What 
results is a different phenomenon, in which the shorter relaxation response of the 
fluid (here modeled by Newtonian viscosity) arrests the acceleration in a layer near 
the wall. Now the slip layer is much thicker, with its outer boundary corresponding 
to a discontinuity in the strain rate v,. The solution approaches a steady state in 
which v, is discontinuous but the total stress T= a(~,) + EV, is continuous. The 
steady state has the same layer thickness as predicted analytically, but the center- 
line velocity is 20% too high; this is because the centerline velocity is extremely 
sensitive to the slope of the velocity profile in the slip layer, which is affected by the 
artificial viscosity in the numerical method. The layer formation is crucial to our 
interpretation of the spurt phenomenon. 

More extensive experiments were performed using the solid mechanics algorithm. 
For example, the calculation of Fig. 8 was repeated using this method and a graded 
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FIG. 8. Onset of spurt for a fluid with Newtonian viscosity. 

mesh of 160 elements; the same layer thickness as shown in Fig. 8 was obtained, 
and the centerline velocity of the long-time solution differed from the analytic 
prediction by about only 1%. 

5b. Spurt Phenomenon 

We used the solid mechanics approach to simulate the experiments of 
Vinogradov, et ul. with polyisoprene [20]. In these experiments, the sampl 
are labeled PI-l through PI-8, ordered by increasing molecular weight 
parameters entering the mathematical model were chosen to correspond t 
samples. In the system (JS), c( measures the relative importance of inertial an 
elastic effects, and E reflects the presence of Newtonian viscosity. For the 
mental fluids, however, the Newtonian viscosity is negligible because there is no 
solvent; instead the fluids exhibit a second relaxation time that is much shorter than 
the dominant relaxation time ,V’. Nevertheless, the effects of a short seco 
relaxation time are correctly modeled by the Newtonian viscosity term pr 
that E is interpreted as the ratio of the relaxation times f 11 j. 

The following features of the experimental fluids samples were used to determine 
the physical constants: 

(i) The elastic modulus p is independent of the molecular weight 
(ii) The contribution to the zero shear viscosity from the dominant relaxa- 

tion time, p/A, varies over two orders of magnitude because of the sensitive 
dependence of A - ’ on M. 
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(iii) There is a critical molecular weight below which the material does not 
spurt. (Samples PI-1 and PI-2 do not exhibit spurt.) 

(iv) For samples PI-3, PI-S, the critical stress for onset of spurt is independ- 
ent of M. 

These observations, together with the presumption that the secondary relaxation 
time is independent of M, lead to values for CI and G that decrease with M and a 
value of a= 0.98. These values are obtained readily from our definitions in 
Section 2 and the dimensional information given in Ref. [9]; they are given for 
each of the Vinogradov fluids in Table I. The computational results are shown 
in Figs. 9-11. 

Figure 9 shows the evolution of the spurt process in time; the centerline velocity 
is plotted vs. time for sample PI-7 withf= 1.2. The spatial mesh, with a total of 640 
elements, was graded to have smaller elements near the wall. All simulations were 
carried out using zero initial data. Not visible in Fig. 9 is a “start-up” transient, 
occurring on a time scale of order E, during which the centerline velocity spikes to 
a large value corresponding to a Newtonian fluid with viscosity E. Following this 
is a “latency” period when the velocity and the shear stress resemble a steady solu- 

tion without spurt. This period ends at t = 2.36 (i.e., 376 s, dimensionally), when a 
spurt solution begins to develop. Notice that these three phases of the dynamics 
correspond to the results of the phase-plane analysis of Section 3c. Moreover, the 
latency time observed in the full dynamical simulations correlates precisely with the 
value t = 2.36 found by integrating the ordinary differential equations; it also agrees 
with the predictions of Eq. (3.8), which gives t = 2.30 (see Ref. [ 111). 

The calculation shown in Fig. 9 has not been run long enough to achieve steady 
state. Essentially steady flow is attained after about five more time units; thus we 
predict that the whole dynamic process for this experimental sample takes about 
40 min. We have run complete simulations for each of the eight samples. Figure 10 
shows the results, as compared to the data reported in Ref. [ZO]. In these graphs, 
effective shear rate S is plotted vs. effective wall shear stress Twa,, =fh/2; here the 
effective shear rate is S= 4Q/rcR3 for a capillary of radius R and S = 6Q/(wh*) for 
a slit die of width w, Q being the volumetric flow rate [9]. 

Figure 11 shows the result of simulating a loading sequence in which the pressure 
gradient f is increased in small steps, allowing sufficient time between steps to 
achieve steady flow [9]. The loading sequence is followed by a similar unloading 

TABLE 1 

Nondimensional Groups c( and B Corresponding to the Data of Vinogradov et al. [ZO], 
Fit by the Power Laws of Ref. [9] 

PI- 1 PI-2 PI-3 PI-4 PI-5 PI-6 PI-7 PI-8 

G(x 1O’O 400 44.2 0.627 0.137 0.0876 0.0438 0.00569 0.00420 
E 0.376 0.125 0.0149 0.00697 0.00557 0.00394 0.00142 0.00122 
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FIG. 9. Centerline velocity vs. time. 

sequence, in which the driving gradient is decrease in steps The initial ste 
zero initial data, and succeeding steps used the results of the previous step as initial 
data. The resulting hysteresis loop resembles the “‘shape memory” observe 
Hunter and Slemrod [4] in their model system (3.5). The width of the hyst 
losp at the bottom can be related directly to the molecular weight of the sample 
[9] (see Section 6). 

5~. Performance of the Numerical Methods 

Of the numerical methods we have proposed, the random choice metho 
only one that applies to the interesting case in which E = 0; the 
tions of our results in this case remain to be elucidated. However, because it is 
explicit, this method is restricted to values of a that are not too small. (~eca~~~~g 
that the wave speed is &?%?-@, the number of time ste 
t is Q(Nt/&) f 

s required to reach time 
or a calculation with N spatial mesh ccl When E # 0, the solid 

mechanics approach yields the most fully developed an flexible method. The 
parabolic method may have advantages, but we have not attempted to refine it; our 
implementation is as simple as possible, relying heavily on packaged codes, so as 
to confirm the validity of the other two methods. 

Computations in the experimental regime yield interesting insights into the 
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FIG. 10. Volumetric flow rate vs. effective shear stress: (a) experiment [20]; (b) numerical calcula- 
tion [9]. Notice that the horizontal scale of this panel matches that of panel (a), but the vertical scale 
does not. 

FIG. 11. Hysteresis under cyclic loading. 
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behavior of our numerical methods; a case in point is the phenomenon of latency. 
To accurately reproduce the latency time predicted by phase-plane analysis, d,i 
must be relatively small compared to E during the transient “Newtoni 
which takes place on a time-scale of order E. Figure 9 was generated usi 
steps with At = a/10, followed by 7500 steps with At = ~11.13. When the 
larger, the solid mechanics algorithm remains stable, but accuracy is s 
the normal stress difference 2 at the end of the Newtonian phase is not 
precisely. Indeed, if equal time steps are used throughout the simulation, t 
time is computed to be 1= 2.14. That this value compares favorably with t = 2.36 
reflects the robustness of the algorithm. By constrast, there is no semi-implicit treaf- 
ment in our version of the parabolic method, which requires a time step smaller 
than does than the solid mechanics approach. 

We have been careful to test the validity of the numerical results we report here. 
0ne of the questions we sought to resolve involves the oscillations evident in Fig 9 
during the spurt process. In Ref. [9], results were reported on meshes much cruder 
than the one used to compute the results of Fig. 9; the oscillations were larger in 
amplitude, and they did not diminish with refinement of time step. Figure 9 shows 
that these oscillations diminish with refinement of the spatial grid size, suggesting 
that they are induced by spatial discretization error. This conclusion 
by inspection of Fig. 9: the larger oscillations occur somewhat after 
spurt, when the layer boundary has moved out of the region of mesh re~~erne~t 
near the wall. Eventually, however, these oscillations are damped, just as they are 
in calculations with cruder meshes. Further mesh refinement studies indicate that 
although crude spatial resolution can lead to spurious oscillations in spurt 
dynamics, the solution maintains an accurate mean value and approaches the 
correct steady state. These results were reproduced using the parabolic fo~rn~lati~~ 
with a mesh refined to 3072 equal-sized cells. To obtain accurate esti 
latency time with this method, the time step must be about half of that required by 
the solid mechanics method; if this condition is violated, the spurt occurs 
~rematureiy (but the steady states achieved are accurate). hen the time step is so 
refined, the results obtained with both methods agree to grap 

Our numerical approaches have successfully computed fully 
for a Johnson-Segalman fluid at a high Deborah number. Thus 
“high Weisenberg/Deborah number problem,” at least in 
Currently, we are investigating generalizations of our 
dimensional problems of physical interest. 

6. RHEOLOGICAL EXPERIMENTS 

In Ref. [9], several possible experiments are suggested that could verify the inter- 
pretation of spurt put forward here. The most important experiment suggested is 
the verilication of the molecular-weight dependence of the widest point of the 
hysteresis loop of Fig. 11. 
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The shape of the hysteresis loop is a key feature predicted by our analysis and 
computations: the loop always opens from the point at which unloading begins, 
and there is a discontinuity in slope during unloading. This is because the solutions 
proceed from “top-jumping” in Fig. 2, through intermediate convexifications of the 
curve, to “botton-jumping,” causing the discontinuity in slope. (This behavior is in 
distinct contrast to the interpretation of Ref. [ 131, where bottom-jumping is always 
the rule for steady spurt solutions, and portions of the loading path are retraced 
during unloading.) The critical wall stress for onset of spurt under loading is 
Tc,it = 5 + O(E), whereas spurt does not cease when unloading until the wall stress 
drops below 2&[1+ O(E)]. The sensitive dependence of E on the molecular weight 
leads to observable variation in the hysteresis loop. 

The analysis and computations presented in this paper allow us to say more 
about experimental signatures: (i) before dramatic growth in throughput occurs, 
very slow flow with little throughput persists during a latency period that can last 
several minutes; (ii) latency occurs only when.& is sufficiently small (i.e., less than 
l/8 for Johnson-Segalman; the precise number for other models may be different); 
(iii) latency occurs only if the applied pressure gradient is not too large (fcrit <f < 2 
for Johnson-Segalman); (iv) the latency time scales with 1-l when the pressure 
gradient is fixed, and is determined approximately by integrating Eq. (3.8). 

7. CONCLUSION 

Well-posed dynamical problems for fluids with non-montone constitutive rela- 
tions need not be unphysical. In fact, the Johnson-Segalman model provides a 
relatively simple example that accurately describes spurt. Our analytical and com- 
putational results predict several phenomena related to spurt, which should be 
observable in rheological experiments. 
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